Variable Metric Method for Minimization

نویسنده

  • William C. Davidon
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Variable - Metric Methods for Sparse Hessians

The relationship between variable-metric methods derived by norm minimization and those derived by symmetrization of rank-one updates for sparse systems is studied, and an analogue of Dennis's nonsparse symmetrization formula derived. A new method of using norm minimization to produce a sparse analogue of any nonsparse variable-metric method is proposed. The sparse BFGS generated by this method...

متن کامل

Computational experience with improved variable metric methods for unconstrained minimization

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library The paper describes ...

متن کامل

Variable metric method for minimization of partially separable nonsmooth functions

In this report, we propose a new partitioned variable metric method for minimizing nonsmooth partially separable functions. After a short introduction, the complete algorithm is introduced and some implementation details are given. We prove that this algorithm is globally convergent under standard mild assumptions. Computational experiments given confirm efficiency and robustness of the new met...

متن کامل

New class of limited-memory variationally-derived variable metric methods

A new family of limited-memory variationally-derived variable metric or quasi-Newton methods for unconstrained minimization is given. The methods have quadratic termination property and use updates, invariant under linear transformations. Some encouraging numerical experience is reported.

متن کامل

Limited-memory projective variable metric methods for unconstrained minimization

A new family of limited-memory variable metric or quasi-Newton methods for unconstrained minimization is given. The methods are based on a positive definite inverse Hessian approximation in the form of the sum of identity matrix and two low rank matrices, obtained by the standard scaled Broyden class update. To reduce the rank of matrices, various projections are used. Numerical experience is e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 1  شماره 

صفحات  -

تاریخ انتشار 1991